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A B S T R A C T

Background: Manual segmentation is currently the gold standard to assess white matter hyperintensities (WMH),
but it is time consuming and subject to intra and inter-operator variability.
Purpose: To compare automatic methods to segment white matter hyperintensities (WMH) in the elderly in order
to assist radiologist and researchers in selecting the most relevant method for application on clinical or research
data.
Material and Methods: We studied a research dataset composed of 147 patients, including 97 patients from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) 2 database and 50 patients from ADNI 3 and a clinical
routine dataset comprising 60 patients referred for cognitive impairment at the Pitié-Salpêtrière hospital (im-
aged using four different MRI machines). We used manual segmentation as the gold standard reference. Both
manual and automatic segmentations were performed using FLAIR MRI. We compared seven freely available
methods that produce segmentation mask and are usable by a radiologist without a strong knowledge of com-
puter programming: LGA (Schmidt et al., 2012), LPA (Schmidt, 2017), BIANCA (Griffanti et al., 2016), UBO
detector (Jiang et al., 2018), W2MHS (Ithapu et al., 2014), nicMSlesion (with and without retraining) (Valverde
et al., 2019, 2017). The primary outcome for assessing segmentation accuracy was the Dice similarity coefficient
(DSC) between the manual and the automatic segmentation software. Secondary outcomes included five other
metrics.
Results: A deep learning approach, NicMSlesion, retrained on data from the research dataset ADNI, performed
best on this research dataset (DSC: 0.595) and its DSC was significantly higher than that of all others. However, it
ranked fifth on the clinical routine dataset and its performance severely dropped on data with artifacts. On the
clinical routine dataset, the three top-ranked methods were LPA, SLS and BIANCA. Their performance did not
differ significantly but was significantly higher than that of other methods.
Conclusion: This work provides an objective comparison of methods for WMH segmentation. Results can be used
by radiologists to select a tool.
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1. Introduction

White matter hyperintensities (WMH) are signal abnormalities of
white matter (WM) on T2-weighted (T2w) magnetic resonance imaging
(MRI) sequences. They are commonly seen in the brain of elderly
people. In such populations, the majority of these abnormalities are
presumed to be of vascular origin. The STandards for Reporting
Vascular changes on nEuroimaging (STRIVE) have provided re-
commendations to standardize their interpretations (Wardlaw et al.,
2013). In clinical practice, visual rating scales are used to evaluate
WMH linked to microvascular pathology, the most common being the
Fazekas scale (Fazekas et al., 1987). However, it does not give a precise
information about the spatial localization and volume of WMH. Manual
segmentation is currently the gold standard to evaluate the volume of
WMH, but it is time consuming and subject to intra and inter-operator
variability (Commowick et al., 2018; Grimaud et al., 1996).

Automated segmentation of WMH is thus potentially very useful, as
it would allow large scales analyses which could progress our under-
standing of the relationship between pathologies and localized WMH.
In the clinics, automated segmentation can represent a gain of the
radiologist time and may speed up the evaluation of the patient state.
Many approaches (see (Caligiuri et al., 2015) for a review) have been
proposed for automatic segmentation of WMH, mostly in the context of
vascular abnormalities of the elderly and multiple sclerosis. Several of
them are implemented in freely available software. However, currently,
none of these approaches is recognized as a reference standard.
Therefore, radiologists willing to use such tools have little information
on performance or dos and don’ts. Caligiuri and colleagues reviewed
the methods behind automatic WMH segmentation but did not compare
their performance (Caligiuri et al., 2015). The MICCAI 2017 WMH
Segmentation Challenge (https://wmh.isi.uu.nl/) (Kuijf et al., 2019)
has evaluated 20 methods on a dataset of 170 images (60 for training
and 110 for testing) from memory cohorts of three different institutes
(UMC Utrecht, NUHS Singapore, VU Amsterdam). However, most of
these techniques require preprocessing that is very specific to the da-
taset at hand, which is difficult to adapt to another dataset. R. Heinen
and colleagues (Heinen et al., 2019) performed a comparison of five
methods including LPA and LGA on a dataset of 60 patients, but did not
evaluate some of the most recent tools (NicMSlesion, UBO, BIANCA) .
None of the previous publications evaluated the performance on routine
data, with artifacted images.

In this paper, we aimed to determine which are the best freely and
user-friendly available software tools for segmenting WMH in the el-
derly. To that purpose, we benchmarked the performances of seven
tools on a large subset of 137 images from the ADNI research dataset. In
addition, we evaluated the performances of the tools in a clinical rou-
tine context on sixty patients, using off-the-shelf algorithms optimized
on ADNI. We further evaluated the robustness of the algorithms in
presence of artifacts or for data collected across multiple scanners.

2. Material and methods

2.1. Participants

We used two different datasets: a research dataset from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (ad-
ni.loni.usc.edu) (Mueller et al., 2005) and a clinical routine dataset. For
the research dataset, we randomly selected 97 participants from ADNI 2
and 50 participants from ADNI 3. We extracted a training subset by
randomly selecting 20 patients from ADNI 2 and 20 patients from ADNI
3. More details about the ADNI are presented in Supplementary Text 1.

The clinical routine dataset was composed of 60 patients from the
Pitié-Salpêtrière hospital. Specifically, we included the last 15 con-
secutive patients (at the date of May 15, 2019) who were referred for
assessment of cognitive impairment on each of the four MRI machines
currently in use in the Department of Neuroradiology. We excluded

patients with stroke, tumor, hematoma, inflammatory and infectious
pathology. For the clinical routine dataset, all clinical and biological
data were generated during a routine clinical workup and were retro-
spectively extracted for the purpose of this study. Therefore, according
to French legislation, explicit consent was waived.

The main characteristics of these three populations are summarized
in Table 1 and detailed information is provided in Supplementary
Tables 1 and 2.

2.2. MRI acquisition

In the research dataset (ADNI), all patients had a 3D T1-weighted
(T1w) and a FLAIR sequence acquired at 3 T. FLAIR sequences were 2D
in ADNI2 and 3D in ADNI 3. Acquisition protocols have been previously
described (Jack et al., 2015, 2008) (http://adni.loni.usc.edu/methods/
documents/mri-protocols/).

In the clinical routine dataset, all patients had a 3D T1-weighted
sequence and a 3D FLAIR sequence (except for two patients who had a
2D FLAIR). The acquisitions were performed on four different MRI
machines (GE Signa HDxt 3 T, Siemens Skyra 3 T, GE Optima MR450w
1.5 T, GE Signa PET/MR 3 T) and parameters were heterogeneous (see
Supplementary Tables 3 and 4), thereby reflecting the reality of clinical
routine.

We assessed visually the presence of artifacts on T1 and FLAIR
images. Specifically, a participant was assigned to the “artifact group” if
either the T1 or the FLAIR image had artifacts that could limit the in-
terpretation. This assessment was made independently by two radi-
ologists (QV, EX) and both readers agreed on all cases. Ten participants
were assigned to the “artifact group”. Three participants had artifacts
on the T1w image, two had artifacts on the FLAIR image while for the
remaining five participants, both images were artifacted. One example
of an artifacted image is shown in Supplementary Fig. 1 and the char-
acteristics of those participants are reported in Supplementary Table 2.

2.3. Automatic segmentation tools

We selected segmentation methods by reviewing the literature from
2012 to November 2018, from which we identified 33 different
methods. A summary of our literature review can be found in
Supplementary Table 5. For inclusion in the comparison, methods
needed to be freely available and to produce the segmentation mask as
output (and not only the volume), which reduced the list to fourteen
methods. Moreover, we included only user-friendly methods, which had
to be usable by a radiologist without a strong knowledge of computer
programming. Thus, we removed methods for which the user needed to
perform specific image preprocessing. This left seven methods that we
considered in our study.

We included :1) the lesion growth algorithm (LGA) (Schmidt et al.,
2012) from the lesion segmentation toolbox (LST) (www.statisti-
calmodelling.de/lst.html), included in SPM12 and based on probabil-
istic modeling and a region growing algorithm; 2) the lesion prediction

Table 1
Demographic information for the research dataset (from ADNI) and the clinical
routine dataset. Continuous values are displayed as average with the min–max
range within parentheses. For ADNI, we also display the characteristics of the
training and testing datasets separately.

ADNI ROUTINE

All Training Testing All

N 147 40 107 60
Age

(range)
74
(58–90)

74.7
(58–90)

73.7
(59–90)

78.2
(52–101)

Sex 85
F/51 M

19
F / 21 M

66
F / 41 M

30
F / 30 M
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algorithm (LPA) (Schmidt, 2017) (Schmidt, 2017, Chapter 6.1), also
from the SPM LST toolbox and based on logistic regression; 3) the Brain
Intensity AbNormality Classification Algorithm (BIANCA) (Griffanti
et al., 2016) included in FSL, based on the K nearest neighbors (K-nn)
algorithm; 4) the UBO detector (Jiang et al., 2018), also based on K-nn;
5) the Wisconsin White Matter Hyperintensities Segmentation Toolbox
(W2MHS) (Ithapu et al., 2014) a method based on the random forest
algorithm; 6) the multiple Sclerosis Lesion Segmentation toolbox
(Roura et al., 2015) (SLS) based on thresholding of a WM segmentation
map; 7) the nicMSlesion toolbox based on a cascade of two 3D patch-
wise convolutional neural networks (Valverde et al., 2019, 2017). For
nicMSlesion, we used two different models: the original model (trained
by the authors of the original publication on a multiple sclerosis dataset
and directly available), a retrained model for which we retrained the
last three fully connected layers using our training dataset. To note,
BIANCA specifically requires a training set, to create a set of feature
vectors for lesion and non-lesion classes, for which we also used the
ADNI training subset. Computation times for the different methods are
reported in Supplementary Text 2.

2.4. Determination of hyper-parameters

Some methods have hyper-parameters that can be adjusted. We
determined the optimal value of the parameters which maximized the
DSC on the ADNI training subset of 40 patients. We performed a “grid-
search”, i.e. testing several possible combination of parameters using
fixed intervals within the range of possible hyperparameters. We de-
termined the optimal parameters for all methods, except for SLS for
which there is no adjustable parameter. For all other methods, which
return a continuous prediction, we estimated the optimal probability
threshold used to define WMH. Other hyper parameters included the
number of K-nn neighbours (UBO), a threshold on the result of the
registration of the segmentation mask to FLAIR space (nicMSlesion,
LGA), a threshold of the WM mask registered to FLAIR space (BIANCA),
a “cleaning threshold” which removes hyperintensities that are closer
than a given distance from the grey matter (W2MHS). More details
regarding the parameters and their optimization are provided in
Supplementary Text 3.

2.5. Manual segmentation

The reference standard was built using manual segmentation of
WMH by a radiology resident trained rater (QV). WMH masks were
manually segmented from the FLAIR sequence using the ITK SNAP
editing tool (Yushkevich et al., 2006). A segmentation protocol was
designed from the advice of two experienced neuroradiologists (SS and
DD). It included the following rules: 1) exclusion of hyperintense lines
adjacent to the ventricles that are one voxel thick; 2) exclusion of WMH
in the septum pellucidum, at the junction of the genu of the corpus
callosum and the septum pellucidum and at the junction of the sple-
nium of the corpus callosum and the ventricles.

We evaluated inter and intra-rater reproducibility on the ADNI
training subset of 40 patients. For inter-rater agreement, images were
segmented by two raters (QV and EX). For intra-rater, QV segmented

the images twice, with a minimum interval of 4 weeks between the two
evaluations.

2.6. Statistical analysis

The primary outcome for assessing segmentation accuracy was the
Dice similarity coefficient (DSC) calculated as :

∩

+

Manual WMH Automatic WMH
Manual WMH Automatic WMH

2 | |
| | | |

We used paired t-tests to compare DSC between methods, or be-
tween clinical images with and without artifact. In post-hoc analyses,
we further adjusted for WMH volume and site/scanner, we also strati-
fied the analysis by high/low WMH volumes (cut off at 10,000 mm3,
which correspond to Fazekas score< 3 (Hernández et al., 2013) com-
monly used in clinical practice). On the clinical routine dataset, we
estimated the proportion of DICE variance attributable to scanner
variability (partial eta-square effect sizes) and tested its significance
using ANOVAs. The significance level was corrected for multiple com-
parisons using Bonferroni correction.

Secondary outcomes included the following metrics:

- Volume Similarity (Taha and Hanbury, 2015):
−

−

+
1 Manual Volume Automatic Volume

Manual Volume Automatic Volume
|| | | ||

- Absolute volume error rate : −Manual Volume Automatic Volume
Manual Volume

| |

- Voxel-level false positive ratio : number of False positive voxels
number of automatic WMH voxels

- Voxel-level false negative ratio : number of False negative voxels
number of automatic WMH voxels

.
- Intra-class correlation coefficient between volumes using a two-way
model with absolute agreement definition and single rater (Koo and
Li, 2016)(Shrout and Fleiss, 1979)

3. Results

3.1. Reproducibility of manual segmentation

Table 2 displays the intra and inter-observer agreement on 40 pa-
tients from the training ADNI dataset. In all cases, the DSC indicated a
substantial, nonetheless imperfect agreement of WMH maps, Though
the intraclass correlation between volumes indicated an excellent
agreement of WMH volumes (Koo and Li, 2016).

3.2. WMH volume distribution

The average WMH volume was 9.6 ml (SD 14.3, median 3.8) on the
ADNI training dataset and 8.0 ml (SD 11.9, median 4.2) on ADNI testing
dataset. WMH distributions were highly skewed to the right and with
many outliers (Supplementary Fig. 2) which led us test to use the Mann-
Whitney-Wilcoxon test to test for difference between groups. WMH
volumes were not significantly different between the ADNI training and
testing dataset (p = 0.5, Mann-Whitney-Wilcoxon test). The average
WMH volume was 16.2 ml (SD 24.8, median 8.1) on the clinical routine
dataset, which was significantly higher than in the ADNI training da-
taset (p = 0.001, Mann-Whitney-Wilcoxon test).

Table 2
Intra- and inter-rater reproducibility assessed on the training dataset from ADNI (comprising 40 patients).

DSC Volume similarity Intraclass correlation Volume error rate False positive rate False negative rate

Intra-operator reproducibility 0.744
(0.723–0.766)

0.899
(0.875–0.922)

0.987
(0.971–0.994)

0.185
(0.145–0.226)

0.196
(0.164–0.228)

0.292
(0.259–0.325)

First segmentation first operator vs second operator 0.723
(0.699–0.747)

0.884
(0.856–0.914)

0.984
(0.962–0.992)

0.277
(0.199–0.355)

0.324
(0.286–0.362)

0.199
(0.168–0.231)

Second segmentation first operator vs second operator 0.701
(0.674–0.729)

0.844
(0.815–0.871)

0.974
(0.951–0.986)

0.310
(0.256–0.364)

0.262
(0.216–0.307)

0.290
(0.238–0.341)

DSC: Dice similarity coefficient. For each metric, the table displays the average and the 95% confidence interval within parentheses.

Q. Vanderbecq, et al. NeuroImage: Clinical 27 (2020) 102357

3



3.3. Determination of hyper-parameters

Initially, we aimed to determine optimal parameters separately for
2D (from ADNI2) and 3D data (from ADNI3). However, we found that
the optimal parameter were very similar for 2D and 3D data
(Supplementary Fig. 3) and yielded comparable DSC. Thus, we used a
single optimal value based on the merged dataset of 2D and 3D training
dataset and did not separate 2D and 3D scans in the rest of the analysis.
We report the distribution of absolute volume error rate and intraclass
correlation according to the different parameter values on
Supplementary Fig. 4 (LPA), 5 (DSC), 6 (Volume error rate) and 7
(Intraclass correlation).

We report the best DSC results and the optimal parameters for each
method in Supplementary Table 6. We used these parameters for our
evaluations in both research and clinical routine datasets.

3.4. Performance on the research dataset (ADNI)

The performance of retrained nicMSlesion was significantly better
than that of algorithm LPA that came second (DSC of 0.595 vs. 0.535
Fig. 1, Table 3; p < 0.001 Supplementary Table 7). nicMSlesion also
achieved the best performance according to secondary outcomes except
for the false negative ratio, where it was superseded by LPA, UBO and
SLS (Supplementary Figure 8, Table 3). The DSC difference between
LPA and SLS (that came third) did not reach significance, however they

performed better than all other algorithms (p < 0.001). Adjusting for
site and WMH volume load did change the ranking, though the super-
iority of retrained nicMSlesion over LPA (1st vs. 2nd) and SLS (3rd)
over LGA, nicMSlesion (original) and UBO could not be deemed sig-
nificant anymore (Supplementary Table 7).

To complement our analysis controlling for WMH volume load, we
studied the performance separately for patients with low
(< 10,000 mm3, which correspond to Fazekas score< 3 (Hernández
et al., 2013)) and high WMH volume load. Again, the retrained nicM-
Slesion performed best for both low and high volume load groups fol-
lowed by SLS and LPA. (Supplementary Table 8).

In order to appreciate the spatial distribution of errors, we con-
structed maps of false positive and false negative rate for each algo-
rithm (Fig. 2). A comparison of manual and automatic segmentation for
a single individual is shown in Supplementary figure 9. Overall, we note
that the errors remain localized around the true WMH location. We
observe that retrained nicMSlesion had a low level of false negative and
that all errors remained around true WMH location. We note that re-
training nicMSlesion reduced massively the frequency of errors and
avoided large errors in unusual locations (e.g. cerebellum). LPA and SLS
good DSC performance came from a relatively low false negative rate
(Fig. 2, Table 3). However, LPA and SLS resulted in false positives lo-
cated mainly in posterior regions.

Fig. 1. DSC performance of the different automatic segmentation methods. Left : ADNI research dataset Right : clinical routine dataset. The boxplots show the median
and the 25% and 75% percentiles of the metrics distribution. Values outside the whiskers indicate outliers. Gray dots show the value for individual participants. .

Table 3
Performance of the different automatic segmentation methods on the research dataset ADNI.

ADNI DSC Volume similarity Volume error rate Intraclass correlation False positive rate False negative rate

LPA 0.539
(0.505–0.573)

0.734
(0.691–0.775)

0.850
(0.570–1.131)

0.812
(0.709–0.876)

0.438
(0.399–0.477)

0.366
(0.321–0.410)

LGA 0.474
(0.441–0.509)

0.759
(0.719–0.798)

0.426
(0.361–0.490)

0.680
(0.561–0.770)

0.444
(0.408–0.480)

0.535
(0.494–0.574)

BIANCA 0.469
(0.430–0.506)

0.638
(0.588–0.686)

0.760
(0.609–0.912)

0.417
(0.249–0.560)

0.393
(0.349–0.436)

0.481
(0.428–0.533)

SLS 0.527
(0.495–0.559)

0.732
(0.696–0.766)

0.903
(0.729–1.078)

0.890
(0.507–0.957)

0.564
(0.531–0.596)

0.277
(0.239–0.314)

W2MHS 0.351
(0.318–0.385)

0.603
(0.551–0.654)

2.219
(1.139–3.299)

0.292
(0.108–0.456)

0.539
(0.482–0.594)

0.569
(0.529–0.608)

nicMSlesion(original) 0.454
(0.419–0.490)

0.787
(0.746–0.826)

0.694
(0.382–1.007)

0.948
(0.924 –0.964)

0.517
(0.476–0.557)

0.503
(0.463–0.543)

nicMSlesion(retrained) 0.595
(0.357–0.921)

0.889
(0.867–0.910)

0.270
(0.159–0.381)

0.979
(0.968–0.986)

0.384
(0.351–0.416)

0.402
(0.376–0.427)

UBO 0.486
(0.459–0.514)

0.762
(0.730–0.793)

0.907
(0.575–1.239)

0.881
(0.652–0.945)

0.587
(0.559–0.615)

0.360
(0.328–0.392)

For each metric, we present the average and the 95% confidence interval within parentheses. DSC: Dice similarity coefficient. Results in bold indicates the best score
for each metric
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Fig. 2. Maps of False negative and False positive rate from each method on the ADNI research dataset. We represent masks of segmentation on MNI template. The
first row of the plot represents an overlay of manual segmentation in the ADNI testing set. The greyscale ranges from 0%(white) to 33% (black) of WMH at any
particular voxel. The left column of the plot represents the false negative rate map for each method in ADNI testing set. The right column shows the false positive rate
map for each method on ADNI dataset. Scale ranges from 0 to 33% of errors at each voxel, which corresponds to the maximal error rates observed.
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3.5. Performance on the clinical routine dataset

On the clinical routine dataset, LPA ranked first on the primary
outcome (DSC of 0.652), followed by SLS (0.613) and BIANCA (0.607;
Table 4 and Fig. 1), though the differences were not statistically sig-
nificant (Supplementary Table 9). However, LPA significantly super-
seded all other methods (p < 0.001) (Supplementary Table 9). Of
note, the size of the clinical sample was smaller than the ADNI sample,
leading to reduced power in detecting significant differences. As for
secondary outcomes, LPA performed best on average for absolute vo-
lume error rate and false negative ratio, while SLS minimized the false
positive ratio, retrained nicMSlesion maximized the intraclass correla-
tion between WMH volumes, and UBO showed the maximal volume
similarity (Table 4, Supplementary Figure 10).

Fig. 3 shows that LPA resulted in few false negatives but many false
positives (consistent with Table 4), similar to what we observed in the
ADNI research dataset (Fig. 2). It was the opposite for SLS (limited false
positives, Fig. 3), which contrasted with results of the research dataset.
Original model of NicMSlesion and LGA had a lot of false positive
segmentations in particularly in the parietal and occipital cortex. Those
were not entirely removed by retraining NicMSlesion (with ADNI data).
Widespread false positives could explain the drop of performance ob-
served on the clinical routine dataset. W2MHS showed extreme false
negative rate, thus misses a lot of WMH (consistent with Table 4)

Breaking down the sample into high and low volume load did not
affect the conclusions (Supplementary Table 10). However, when
comparing images with and without artifacts, we found that the DSC
performance of BIANCA and nicMSlesion significantly dropped in the
artifact group (Supplementary Table 11). On images with artifacts, SLS
performed best for the primary criterion (Fig. 4.a, Supplementary
Table 12). Due to low number of the images with artifacts (10), it was
not possible to test whether this superior performance was statistically
significant.

In addition, we found a significant effect of scanner type on the
performance of most methods (Supplementary Table 13, Fig. 4.b). In
particular, NicMSlesion (original) was the most sensitive to having
different scanners, with about 50% of the DICE variance being attri-
butable to scanner types. The performances of LPA, SLS, W2MHS,
NicMSlesion retrained, and UPO were also significantly associated with
scanner types (Supplementary Table 13, Fig. 4.b), though this only
explained 21–32% of the variability in performance. In contrast, LGA
and BIANCA seemed more robust to the different scanners used to
collect brain MRIs (Partial eta-square effect sizes of 8 and 11%, non-
significantly different from 0).

4. Discussion

We compared seven tools for automatic WMH segmentation to de-
termine which is the most efficient. All tools are freely available and
usable by a radiologist without advanced knowledge in computer pro-
gramming. Our evaluation used both a research dataset (ADNI) and a
routine practice dataset of patients with cognitive impairment.

On the research dataset, nicMSlesion, a cascade of convolutional
networks (with a specific re-training on a subset of the sample)
achieved the highest performance on the primary criterion (DSC).
However, its performance did not generalize well on clinical routine
images and in particular on data with strong artifacts (Table 3, Figs. 1
and 3.a). One important lesson from our study is that complex models
(such as neural network) may be the most accurate when trained on
data similar to the data used for testing but they do not generalize well.
Valverde and colleagues (Valverde et al., 2019), already demonstrated
this for NicMSlesion, on two different multiple sclerosis datasets, that
one obtains lower performances when using a model trained on a da-
taset that is too different from the test set.

On the clinical routine dataset, LPA, SLS and BIANCA exhibited the
highest DSC and their performances were not significantly different
(respectively 0.65, 0.61,0.61). To note, LPA and SLS ranked second in
term of DSC performance on the ADNI sample (0.54, 0.53), which
suggests they generalize well to clinical samples even after we opti-
mized their hyper-parameters on a subset of the ADNI sample.
However, LPA performance drop on images with artifacts and results
dependence of WMH and scanner type was not statistically significant.
SLS appears very robust to artifacts (achieving the highest DSC on the
artifacted dataset) but not to the heterogeneity of scanner (Fig. 3,
Supplementary Table 13. To BIANCA, Additional to his top result on
clinical routine dataset, BIANCA was the most robust to the scanner
heterogeneity, however his performance significantly drop on artifacted
images and it was not a top ranked method in the research dataset. To
note, we demonstrate that BIANCA had no performance drop on routine
dataset even though training data came from the research dataset.

Overall, our results demonstrate that several tools achieved accep-
table performances on both research and clinical datasets. A reasonable
first choice of WMH segmentation tool can be either LPA or SLS, even
though one drawback is that they require a Matlab license (Table 5).
Based on our results when the image dataset could contain patients
with artifacts, SLS may be the method of choice. (Fig. 3 a, Table 5). On
the other hand, in a dataset with many different scanners, BIANCA may
be preferred because of its robustness (Fig. 3 b, Table 5). As for the
neural network nicMSlesion, it seems to be performant only when re-
trained on data that is similar to the data to be segmented (Fig. 1,

Table 4
Performance of the different automatic segmentation methods on the clinical routine dataset.

Routine DSC Volume similarity Volume error rate Intraclass correlation False positive rate False negative rate

LPA 0.652
(0.604–0.701)

0.790
(0.733–0.846)

1.011
(0.469–1.552)

0.727
(0.546–0.836)

0.402
(0.346–0.459)

0.189
(0.149–0.229)

LGA 0.490
(0.437–0.543)

0.729
(0.664–0.794)

2.533
(0.615–4.451)

0.287
(0.050–0.497)

0.560
(0.502–0.618)

0.354
(0.305–0.403)

BIANCA 0.607v(0.556–0.657) 0.788
(0.733–0.843)

0.709
(0.431–0.987)

0.859
(0.774–0.913)

0.404
(0.346–0.463)

0.296
(0.247–0.344)

SLS 0.613
(0.546–0.679)

0.738
(0.676–0.801)

0.515
(0.367–0.662)

0.815
(0.708–0.885)

0.289
(0.231–0.346)

0.368
(0.288–0.448)

W2MHS 0.223
(0.181–0.266)

0.448
(0.382–0.515)

0.682
(0.621–0.743)

0.510
(0.157–0.719)

0.461
(0.377–0.546)

0.844
(0.812–0.877)

nicMSlesion(original) 0.433
(0.377–0.489)

0.647
(0.571–0.723)

4.498
(0.667–8.33)

0.396
(0.109–0.61)

0.616
(0.558–0.674)

0.351
(0.295–0.407)

nicMSlesion(retrained) 0.500
(0.446–0.555)

0.781
(0.722–0.841)

1.349
(0.221–2.477)

0.922
(0.868–0.954)

0.505
(0.439–0.571)

0.433
(0.39–0.476)

UBO 0.560
(0.512–0.608)

0.836
(0.789–0.882)

0.569
(0.211–0.926)

0.734
(0.584–0.834)

0.471
(0.422–0.52)

0.353
(0.301–0.405)

For each metric, the table displays the average and the 95 % confidence interval within parentheses. DSC: Dice similarity coefficient. Results in bold indicates the best
score for each metric.
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Fig. 3. Maps of False negative and False positive rate from each method on the clinical routine dataset. We represent masks of segmentation on MNI template. The
first row of the plot represents an overlay of manual segmentation in the ADNI testing set. The greyscale ranges from 0%(white) to 33% (black) of WMH at any
particular voxel. The left column of the plot represents the false negative rate map for each method in ADNI testing set. The right column shows the false positive rate
map for each method on ADNI dataset. Scale ranges from 0 to 33% of errors at each voxel, which corresponds to the maximal error rates observed.
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Table 5).
Overall, we reported lower performances than in the majority of

previously published papers (Griffanti et al., 2016; Jiang et al., 2018;
Kuijf et al., 2019). However, Rachmadi and colleagues obtained results
similar to ours when evaluating LST LGA on the ADNI data (Rachmadi
et al., 2018). In the same way, Heinen and coworkers had also similar
result on their evaluation of LST LGA and LPA (Heinen et al., 2019).
One of the reasons could be the lower volume of WMH in our two
datasets (and especially in ADNI). However, Jiang and colleagues
(Jiang et al., 2018), in the original publication describing the UBO
software, also reported higher performance for low WMH volume.
Another possible explanation is that the methods and performance re-
ported may not generalize that well and may be somewhat optimistic or
simply not comparable between publications or with our results that
used different training and test samples. We also benchmarked pre-
diction accuracy on the same research and clinical samples. Finally, we
cannot rule out that the lower performances we report are attributable
to differences in manual segmentation protocols between our study and
previous ones.

One should note that the performances we report of most tools is
moderate (DSC between 0.4 and 0.6 in most cases, Table 3, 4, Figure
11) and always below intra and inter-rater reproducibility (Table 2).

This suggests more work is needed to improve performance of auto-
mated algorithms for WMH parcellation, which may include con-
sidering other models (Supplementary Table 5) or larger training
samples. We provided maps of false positive and false negative rates for
each of the methods (Figs. 2 and 3), which may represent a useful
feedback for method developers. In short, we note that on the ADNI
dataset, errors were really close to the WMH identified by the radio-
graphers which suggests some of the errors are on the boundaries of
WMH regions. To improve performance of their methods, apart from
the fact that the medical definition of WMH could be better homo-
genized, they could use a mask to eliminate some regions where WMH
is impossible or presumed to be of vascular origin (e.g. septum pellu-
cidum, cortex or cerebellum white matter). Secondly, they should find
ways to better standardize white matter intensity, either using ex-
tensive training datasets or using the intensity of the cortex for instance.
In clinical use, it might be important to progress preprocessing to re-
duce artifact rate.

Importantly, we should not necessarily discard those methods be-
cause of low DSC, as DSC may be overly sensitive to limited WMH
parcellation errors. The boundaries of WMH regions are always being
debated. Thus, we reported several metrics throughout the manuscript
that may advise on which method is best for different applications. For

Fig. 4. Boxplots of DSC performance across Artifact and Scanner subgroups. a. DSC distributions with and without artifact. The box shows the median and the 25%
and 75% percentiles. The whiskers indicate the distribution in function of the inter-quartile range. Orange boxplot and dots show data without strong artifact. Blue
boxplot and dots show results with artifact. N artifact image = 10 and N without artifact = 50. b. DSC distributions for the different MRI scanners. The box shows the
median and the 25% and 75% percentiles. The whiskers indicate the distribution in function of the inter-quartile range. Outliers are presented as black rhombus.
Yellow Stars indicates a significant effect of scanner type on DSC variance. N = 15 per scanner. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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example, several algorithms achieved good performance on WMH vo-
lume evaluation [Table 3, 4], which is the main criterion used in
clinical assessment. For example, one could choose to use UBO, given
that it obtained good volumetric results and that it directly provides
additional features, such as segmenting WMH by vascular territories or
anatomical regions. In addition, one could select the method that
minimizes the false negative rate (SLS or LPA) as a way of reducing the
search space for manual segmentation.

Many teams develop automatic WMH segmentation methods,
mainly for multiple sclerosis or microvascular pathology associated
with aging and cognitive impairment. However, few have compared the
performance of these different methods. Many challenges are com-
paring automatic WMH segmentation methods, both for multiple
sclerosis (MS segmentation challenge MICCAI 2008 (http://www.ia.
unc.edu/MSseg/), ISBI 2015 longitudinal multiple sclerosis lesion seg-
mentation challenge (Carass et al., 2017) (http://iacl.ece.jhu.edu/
index.php/MSChallenge), MSSEG MICCAI Challenge 2016
(Commowick et al., 2018) (https://portal.fli-iam.irisa.fr/msseg-
challenge)) and age-related WMH (MICCAI 2017 WMH Challenge
(Kuijf et al., 2019)). Such challenges are very useful to assess which are
the most efficient methodological approaches. But most of the partici-
pants to these challenges do not provide easily usable codes im-
plementing their tools. Thereby, while these challenges are very useful
to the methodological community of researchers developing new al-
gorithms, they are of less use to a radiologist who would like to choose
an easy-to-use tool.

To our knowledge, this is the first study to compare software while
including data with artifacts, which reflects the reality of clinical rou-
tine. Indeed, artifacts are common, in particular during MRI acquisi-
tions of patients with cognitive impairment. For all methods, there was
a performance drop on data with artifacts (Fig. 3a). Such reduction in
performance was significant for the deep neural network and BIANCA,
losing over 0.2 point of DSC. On the other hand, SLS performs best on
these data and the performance drop between data without and with
artifacts was only 0.05 points of DSC.

Beyond sheer performances of the algorithms, we also evaluated
how robust their performances were when using several MRI scanners,
which is one of the principal factor of heterogeneity in MRI intensity.
We found that the performance of most algorithms was sensitive to
scanner types, though, LGA and BIANCA appeared the most robust. Our
results align and extent those of a recent publication which suggested a

possible scanner effect on algorithms performance on a sample of 42
participants from 7 different scanners (Heinen et al., 2019). Robustness
may be an important criterion for algorithm selection in multi-centric
studies, and in particular when the proportion of cases and controls
varies between sites/scanners, thus when site/scanner may confound
WMH association analyses because. More work is needed to further
study if training on each/several scanner type could improve the per-
formance of algorithms sensitive to scanner type. We evaluated het-
erogeneity related to the type of scanner, although it is a major factor of
heterogeneity, it is not the only one. Thus, many factors, such as TE, TR,
matrix size, etc., can influence image quality and contrast, and warrant
further investigation.

Our study has the following limitations. First, the imperfect re-
producibility of manual parcellation (at a vertex level, Table 2) calls for
a more precise definition of the WMH and their boundaries, even
though it was similar to that reported in the literature (Commowick
et al., 2018; Coupé et al., 2018; Kuijf et al., 2019). When we visually
inspected our different manual segmentation, we found that most of the
differences to be at the limit of the WMH regions with an unclear in-
tensity gradient. There is no precise standardized recommendation
about the periventricular hyperintensities, whether they should be
considered microvascular pathology or not. To overcome this limita-
tion, we designed a protocol with experienced neuroradiologists. We
discussed the pathogenesis of some hyperintensities, such as one-pixel
hyperintensities close to the ventricles or in touch with the genu of the
corpus callosum. Whether these very thin WMH represent micro-
vascular pathology remains debated in the field. Kim et al. demon-
strated that non-ischemic WMH are often located in juxtaventricular
areas because they likely result from cerebrospinal fluid leakage (Kim
et al., 2008) while Hernandez et al. came to more mixed conclusions
(Hernández et al., 2014). Overall, the segmentation accuracy remains
substantially lower than what is reported for other medical image
segmentation tasks, such as subcortical grey matter structures
(Pagnozzi et al., 2019) or brain tumors (Wadhwa et al., 2019). This
illustrates that WMH segmentation remains a challenging task. Sec-
ondly, having only one reader for the test set may also be seen as a
limitation. Nevertheless, considering the limited inter- and intra-ob-
server reproducibility that we report it may have led to an overly
conservative definition of WMH. Lastly, another limitation is to have
limited ourselves to a set of methods, which are directly usable and
allowing access to the segmentation mask. For example, this led us to

Table 5
Summary of evaluation, and some selected information to choose a method.

Ranking on
research data

Ranking on
routine data

Robustness
artifacts

Robustness
different scanner

Sequences
needed

Need training
data

Limitations/
Requirements

Proc. time

LPA 2 1* – – FLAIR No Matlab 1 min
LGA 4 5 – FLAIR/ T1w No Matlab 6 min
BIANCA 4 1 – FLAIR/ T1w Yes Need mask of WM 17 min1

SLS 2 1 – FLAIR/ T1w No Matlab 8 min
W2MHS 8 8 – FLAIR/ T1w No Matlab 5 min
nicMSlesion (original) 4 7 – FLAIR/ T1w No GPU 10 min2,3

nicMSlesion
(retrained)

1* 5 – – FLAIR/ T1w Yes GPU 10 min2,3

(23.5 h2,4)
UBO 4 4 – – FLAIR/ T1w No Matlab 9 min

Ranking performed using t-test comparison on the primary criterion (DSC) (see Supplementary Tables 7 and 9 for details). We started by looking at the method with
the best DSC. Then all methods not significantly different from it were given the same rank classified, and so on.
Processing time were evaluated on MacBook Pro laptop with a 2.2 GHz Intel Core i7 2018 CPU, without a graphic processing unit (GPU), with 16 Go RAM except for
the nicMSlesion for which we used a GPU-equipped computer, namely a Linux workstation with an Intel Xeon E5-2699 @ 2.30 GHz CPU, with NVIDIA Quadro
M4000 GPU, 256 Go RAM.
– indicates that the DSC is sensitive to artifacts or scanner type at p < 0.05 uncorrected for multiple comparisons, on routine dataset.
– indicates that the DSC is sensitive to artifacts or scanner type at after correction for multiple testing, on routine dataset.
* Best DSC in our evaluation (though not necessarily significantly better which explains equal first).
1 2 min for segmentation and 15 min for generation of the exclusion mask.
2 With graphic processing unit (GPU, NVIDIA Quadro M4000).
3 3.5 min for segmentation and 6.5 min for preprocessing
4 Retraining time.
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exclude the tool which ranked first in the MICCAI 2017 WMH Seg-
mentation Challenge (Li et al., 2018) because it was not directly usable.
It uses a U-net convolutional neural network (Ronneberger et al., 2015)
architecture. Notably, Duong and colleagues (Duong et al., 2019) and
four of the top ten challengers of this challenge used this architecture,
but they have not released a user-friendly version. We also did not in-
clude the promising LesionBRAIN (Coupé et al., 2018) (Supplementary
Table 4) because it does not provide the required segmentation mask.
More work is needed to make new software available and user-friendly
to the community. In addition, future work could focus on the in-
tegration in the clinical workflow, allowing for example, to use these
tools directly with DICOM. We have released all hyper-parameters used
in our analysis, which should facilitate replication of our results and
reuse of the algorithms we considered here.

In conclusion, we compared seven automatic WMH segmentation
algorithms on both research and clinical routine data. These results can
provide useful information to researchers and radiologists looking to
choose an automatic WMH segmentation method.
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